你的位置:两化动态

把握3大要素,让智能工厂变为现实

2020-01-14

想象一间传统的工厂,它可能是一栋巨大的建筑,位于工业园区的一个角落。然而,这样的工厂就像一座孤岛一样,往往与其它制造企业隔绝开来。不仅仅是位置的隔绝,工厂的OT和IT网络层面也是孤立的存在。

如今,这样的模式已经无法满足制造业的发展趋势。特别在不确定的经济环境中,企业急需提升工厂车间的效率和生产力
同以往相比,消费者越来越关注所购商品的可追溯性。相应地,企业也能够在商品之外提供新的附加服务,从而开拓全新的收入来源。
为了把握这些机遇,制造商纷纷着手将生产运营数字化,并生成可以利用的实时数据。换句话说,它们正在打造智能工厂,并将其与整个企业的运营连接起来。区块链、量子计算、AI等新兴技术,也将在这一领域创造新的机遇。
然而,打造智能工厂是一段旅程,企业很难确定最佳的前进路线。
最新的一项制造业调查报告显示,在当前的经济压力之下,58%的制造企业表示“成本”这一要素成为了智能工厂计划的最大障碍。更重要的是,迄今为止,大多数智能工厂项目尚未获得投资回报(56%),这使得进一步投资项目变得难上加难。

如何运用创新技术把握趋势?
如何打造智能工厂?
并为企业带来真正的价值?
文章为您总结了三大要素。

01
拉近客户距离


打造一个互联工厂为制造企业提供了向客户提供全新服务的机会。事实上,改善客户体验已成为智能工厂项目最受欢迎的外部目标(62%)。
在消费市场中,个性化定制的趋势越来越明显。生产商可以按照不同的需求交付商品,消费者趋之若鹜。而连接性与效率将是迈向批量生产的关键。调查显示,有将近一半(47%)的制造企业正在实施智能工厂项目,以实现高效的产品定制化生产。
02
提升工厂效率


“效率”是所有制造企业都在关注的重要因素。我们的调查显示,智能工厂项目最常见的内部目标就是提高产品质量(50%),其次是提高资产利用率(47%)。
特别是在高端制造业,传统工厂的检测工序通常由人工完成,这一流程既耗时,又容易出错。特别是一些对安全性要求较高的产品,比如风力涡轮机,及时微小的偏差也可能造成灾难性的后果。
利用图像识别与机器学习技术,就可以让质量控制过程实现自动化。包括x光在内的影像数据能够利用算法来进行分析,从而快速识别异常。
新兴的计算技术还能够极大地提升工厂的生产效率。
以往,制造企业会利用普通计算机来处理生产流程中的优化组合问题,例如机器人在喷漆或焊接时的最高效路径计算,这一计算过程往往非常耗时。而如今,量子计算系统能够实时为我们提供答案,从而最大化机器人的生产效率。在富士通自身的一家工厂当中,量子计算系统让零件分拣作业的行程缩短了45%!
03
可追溯、可持续


如今,消费者比以往任何时候都更加关心产品的来源以及可持续性。同样,可追溯性对于满足监管要求也十分重要。
区块链正逐渐成为一种强大的工具,可以追踪从原材料到最终产品的全生命周期。区块链能够安全、分布式地存储产品信息,并且确保在供应链中的任何一个节点都不能随意篡改,因此消费者可以充分信任产品的相关信息。
以食品为例,区块链可以让消费者对购买的食品进行从农场到餐桌的追踪,从而安心享用,让肉类、大豆、奶制品的生产信息一览无余。通过这种方式,智能工厂可以帮助制造商展示其产品质量以及企业的社会责任。